第二个概念:异度拓扑
有人看到小说标签中有这个词:
拓扑。
那么这是什么意思呢?
物理学中————
拓扑学(topology)是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。
几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。
拓扑的公理——
设X是一个非空集合,X的幂集的子集(即是X的某些子集组成的集族)T称为X的一个拓扑。当且仅当:
1.X和空集{}都属于T;
2.T中任意多个成员的并集仍在T中;
3.T中有限多个成员的交集仍在T中。
称集合X连同它的拓扑τ为一个拓扑空间,记作(X,T)。
称T中的成员为这个拓扑空间的开集。
定义中的三个条件称为拓扑公理。(条件(3)可以等价的换为τ中两个成员的交集仍在τ中。)
从定义上看,给出某集合的一个拓扑就是规定它的哪些子集是开集。这些规定不是任意的,必须满足三条拓扑公理。
一般说来,一个集合上可以规定许多不相同的拓扑,因此说到一个拓扑空间时,要同时指明集合及所规定的拓扑。在不引起误解的情况下,也常用集合来代指一个拓扑空间,如拓扑空间X,拓扑空间Y等。
同时,在拓扑范畴中,我们讨论连续映射。定义为:f:(X,T_1)——>(Y,T_2)(T_1,T_2是上述定义的拓扑)是连续的当且仅当开集的原像是开集。两个拓扑空间同胚当且仅当存在双向互逆的连续映射。同时,映射同伦和空间同伦等价也是很有用的定义。
举个例子
1.欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。
2.设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。
3.设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。
4.一个具体的例子。设X={1,2}。则{X,{},{1}}是X的一个拓扑,{X,{},{2}}也是拓扑,{X,{},