当前位置:铅笔小说网>科幻小说>从小镇做题家到首席科学家> 第248章 《周易的数学原理》

第248章 《周易的数学原理》(3 / 8)

以群分。’

这里所说的‘类’与‘群’就与数学中的‘集合’概念非常接近。

易学研究中的许多命题,用集合论的语言来描述,就会更加方便、清楚和精确,有利于揭露问题的本质。

本章先介绍集合论的一些基本概念,然后说明易学问题与集合论中的一些基本概念的联系。”

随后周易把这一大章分成了四个小节来叙述。

...

“定义2.2.3:

设A_1,A_2,…,A_n。是n个集合,在A_1中取兀系α_1,在A_2中取元素α_2,…在A_n中取元素α_n,

作成一个有序的n元素组(a_1,a_2,…,a_n,),称为集合A_1,A_2,…,A_n的一个n元序组。A_1,A_2,…,A_n的所有n元序组所成的集合:

D={(a_1,a_2,…,a_n)丨a_1∈A_1,a_2∈ A_2,…,a_n∈A_n }

称为集合A_1,A_2,…,A_n、的笛卡儿积,记作:

D=A_1*A_2*...*A_n。

特殊情况:若A_1=A_2=…=A_n=A时,则称D为A的n重笛卡儿积。

A_1*A_2*...*A_n的一个子集R,称为集合A_1,A_2,…,A_n的一个关系。

易学研究中的许多概念与集合的关系这一概念有密切的关系,

我们随便举一个例子,相信各位风水师必然是十分了解。

这里应该是例题2.2.1了。

古书《系辞》说:‘易有太极,是生两仪.两仪生四象,四象生八卦。’

又说:‘八卦成列,象在其中矣.因而重之,爻在其中矣。’

这些话有何哲学的义理,我们暂且不去管它。

但从集合论的观点看,易卦集可以看成另外一些集合的笛卡儿积。例如:

设A={1,0}是“两仪”的集合,作A的二重笛卡儿积:

B=A*A={(1,1),(1,0),(0,1),(0,0)}

如此,我们可以得到一个‘四象’的集合。

作A的三重笛卡儿积:

C=A*A*A={(1,1,1)(1,1,0)(1,0,1)(0,1,1)(1,0,0)(0,1,0)(0,0,1)(0,0,0)}

就会得到一个‘八卦’集合。

接着如果我们再作A的6重笛卡尔积,就可以得到易卦集。

这里的过程较为简单且单一,建议读者自信证明。”

周易留了一道作业,毕竟

上一页 目录 +书签 下一页