第1091章 治疗肺癌?
让郑海帮忙去调查了一下法尔廷斯教授的近况后,徐川长舒了口气,拾起了桌上的论文稿件继续翻开起来。
毫无疑问,这是在他解决了弱黎曼猜想或者说准黎曼猜想,将黎曼猜想推进到了黎曼ζ(s)函的在0≤re(s)≥1-e的区域内不存非零平凡点上。
以及后续将非平凡零点的比例推进到no(t)>0.731n(t)后数学界对这个问题最大的突破性研究。
利用法尔廷斯教授所创造的方法,论文中已经明确的标注了可以将黎曼函数re(s)临界带上非平凡零点的占比无限推进到了no(t)>0.99n(t)以上的地步。
尽管这并未能完全证实黎曼猜想,但说它是研究黎曼猜想的一个半世纪以来最大的突破也不为过。
这样的一篇论文,即便是他已经看懂了,但也不是短时间内就能够将里面的知识完全消化吸收掉的。
尤其是这篇论文中对xi函数、矩阵构造以及分形gosper曲线的自身重复式构造等方面的研究可以说深入精髓。
盯着论文的中段,徐川眼眸中闪烁着熠熠的光彩,一边喃喃自语的念叨着。
“利用狄利克雷多项式来建立一个矩阵,而矩阵可以通过“作用于”一个具有长度和方向向量而产生另一个向量。”
“尽管大部分的向量转变的过程中都会改变原始向量的长度和方向,但这里法尔廷斯教授通过矩阵中的特征向量来进行扭转和代数重次。”
“有意思!这里似乎可以应用到某些无限问题上?”
思索着,徐川眼眸中的兴趣愈发的浓厚。
法尔廷斯教授对xi函数与矩阵构造的研究相当的深入,尤其是在对应用平面上的贝西科维奇集的应用上,让他看到了一些很不一样的东西。
从抽屉中翻出一迭a4稿纸和笔,他剥开笔帽捏着笔杆盯着洁白的稿纸思忖了一会。
“考察如下一阶拟线性双曲型方程组的 cauchy问题:u/t + a(u)·u/x = 0,t= 0 : u =(x)。”
“其中u =(u1,···, un)t是(t, x)的未知向量函数, a(u)为具有适当光滑元素 aij (u)()i, j = 1,···, n)的 nx n矩阵,而(x)=(1(x),···,n(x))t是具有有界 c1模的c1向量函数”
“那么由严格双曲型假设,在所考虑的区域上矩阵 a(u)具有 n个互异的实特征值,则λ1(u)<λ2(u)<···<λn(u)”
手中的圆珠笔快速的在洁白的稿纸上快速的写下了一个个的算式,法尔廷斯教授对于矩阵的构造,他总觉得还有一些可以挖掘的地方。
当然,这里的挖掘指的是对这项矩阵构造方法应用到其他领域的价值,而不是里面可能隐藏了什么东西。
事实上,在这篇论文中,法尔廷斯教授已经