整点问题中所提出的那套理论中的某个重要公式,有极大的相似之处。
但两者不同的是。
眼前这个公式,可比那位数学家的公式,要完善许多。
而当初那位数学家并未成功解决球内整点问题,一个重要原因,就是那个公式并非完善。
顾律意识到,或许他可以通过这个偶然所得的除数函数的均值公式,尝试一下对球内整点问题发起冲击!
顾律的大脑高速运转。
球内整点问题是一个纯粹依靠公式之间相互推导才可以解决的问题。
简单来说,是由公式1得到公式2,然后再公式1或者公式1与2的结合下得到公式3,以此类推。
最后,可能几十个公式之后,才会得到所需要的最终公式。
因此,最终呈现在纸面上的内容,或许就寥寥几页。
但其繁琐程度,绝对不亚于十几页,甚至几十页的论文。
而且,这还极其考验灵感。
灵感爆棚,或许会一路顺风顺水。
灵感枯竭的话,只能是寸步难行。
而顾律今天,是完全处于灵感充沛的状态。
从最基础的公式1开始,顾律逐步推导,仅半个小时不到的时间,就推导到公式10。
这距离顾律想要的那个公式,已经越来越近。
顾律乘势追击,一个个公式在顾律笔下跃然纸上。
顾律注意力高度集中,眼中除了这密密麻麻的公式,再无其他。
现在的顾律,俨然进入了一种忘我的状态。
…………
于是,当上午八点整,罗宇同学走进办公室的时候,见到的就是一副顾律与包梓对坐,静默无言的景象。
罗宇疑惑的走到这边,站在顾律背后,皱着眉头望着顾律写在纸上,那密密麻麻,繁杂无比的公式。
罗宇是主修数论学的博士,因此顾律写在纸上的一行行公式,罗宇大部分可以读懂。
只不过,理解起来,需要点时间罢了。
“这是……”
罗宇隐约看出来,顾律是在求有关素数分布的某个问题。
但具体是哪个,罗宇还无法断定。
没有选择去办公桌前继续今天的研究工作,罗宇就这样站在顾律身后,从头到尾一步步仔细读着顾律写在纸上的这些公式。
罗宇只是读,而顾律是从无到有一步步的推导。
但始终,罗宇看的速度,都未曾追上顾律写的速度。
不过,随着时间的推移,罗宇终于看明白了顾律求解的是什么。
球内整点问题!
罗宇对该问题并不陌生。