活动的顾律忽然伸了个大大的懒腰。
“呼,终于搞定了啊!”
顾律长长的轻吐口气。
这两天,顾律除了出去陪西蒙吃了几顿饭外,剩余的时间全宅在家里,把精力放在这三篇论文的撰写上。
而今,三篇论文已全部完稿。
《一个有关椭圆曲线在复数域平面的猜想——复环猜想!》
这篇论文顾律写了有三十二页。
当然,只是复环猜想的提出过程的推导,其实十页不到的内容的就可以写完。
但在这篇论文里面,顾律还另外加了一些干货进去。
那是代数几何会场数学家们想从顾律这边得到,但却未曾得到的,顾律的一些有关复环猜想证明过程的猜测及延伸。
想必这篇论文一旦发表,还会再次引发复环猜想的热潮。
这个结果,正是顾律想看到的。
顾律下阶段的科研目标不在复环猜想上面。
但复环猜想的话,对于他后面一个更重要的计划有些举重若轻的作用。
顾律自然是希望数学界早早有人将其证明。
要用到的时候,可以直接拿过来用,而并非还需要一番麻烦的证明。
在顾律看来,复环猜想并非是多么麻烦的一个数学猜想。
代数几何领域云集了这么多的天才人物。
证明这么一个猜想,应该,不成问题吧?
话虽这么说,但隐隐约约,顾律还是有些莫名的心慌。
…………
第二篇论文是有关球内整点问题。
论文题目《球内整点问题素数分布公式的推导》!
简洁明了。
论文一共五页。
页数很少,但内容很多。
顾律从三元二次型开始,先通过简单逻辑变换,得出最基础的那个公式一。
接着便是从公式一开始,推导到公式二十三,最后得出素数分布公式的全过程。
逻辑缜密。
顾律添加了一些在会议报告中没有讲到的细节。
这样的话,即便是并非数论领域的数学家,亦是可以读懂顾律这篇论文。
最后一篇论文,《当K为奇数时,等差素数猜想的证明》!
全文共五十六页!
不是顾律在灌水,而是该猜想的证明过程就是这么复杂。
否则怎么可以和孪生素数猜想、ABC猜想这样的数论猜想并列呢!
并且,这只是等差素数猜想一半的证明过程。
另一半,在康斯坦丁手里。
具体页数顾律不清楚。
但猜测的话,应该