十量子比特芯片的准备。
所以说,在一番商讨之后,这个数字被定在了二十五!
这个数字和昨天新闻上曝出的,米国那台商用量子计算机半成品的量子比特数目相同。
因此顾律和郭院士下阶段的目标,是研发二十五量子比特的半导体芯片。
一旦顾律和郭院士研发成功,那意味着暂时可以追上了米国现在所处的进度。
“行,那这件事就这么决定了,二十五量子比特的半导体芯片,这是我们第一阶段的目标。”
“在二十五量子比特芯片研发成功后,我们直接进军三十量子比特的半导体芯片。”郭院士直接拍板决定道。
和米国那边所处的情况不同。
米国的研究所那边时间充沛,倒是可以在二十五量子比特的基础上一步步增加量子比特数目,按部就班的一点点稳着来。
但他们这边不一样。
时间不允许他们不能采用这种稳步推进的策略,而是只能跳跃着进行研究,进行大数目的跨越。
这样,才会有一丝丝的机会。
关于郭院士的这个决定,顾律点头表示同意。
“那就定下二十五这个数目吧,米国人既然可以研发出二十五量子比特的超导芯片,那我们为什么不可以。”顾律话说的很豪迈。
郭院士哈哈一笑,“这话说的倒是在理。”
“接下来,我们商量一下第二件事,实验方案!”
实验方案,这是课题研究当中关键的关键!
一套优秀的实验方案,往往可以起到事半功倍的效果。
就如顾律不久前待过的两个课题小组那样,正因为顾律提出了相当优秀的实验方案,才使得课题周期被大大缩短。
郭院士一只手放在桌面上,一只手摩挲着下巴,笑眯眯眼神望向顾律,“我一直听艾亮说,你每次在交流实验方案时常常有惊艳之举,那关于我们现在这个课题,你的想法呢?”
沉吟几秒,顾律轻声吐出几个字,“量子比特纠缠!”
郭院士脸上露出欢喜的笑容,“我们果然是所见略同,我想出的方案同样是量子纠缠。”
在解释什么是量子纠缠前,必须要明确一个问题。
量子比特数目的增加,并不是单纯的在半导体芯片上增加量子比特。
简单来说。
只是将量子比特单纯的排列在芯片上是不管用的。
前段时间顾律所率领的课题小组攻克了石墨烯半导体领域存在的两大难题,使得芯片上可容纳的量子比特数目不再是一个限制。
如果量子比特数目的增加只是单纯的一个加法问题的话,别说郭院士和顾律两人了,就算